Zhaoli GUO
Visiting Professor
Dr. Zhaoli Guo worked as a visiting scholar at the Department of Mechanical Engineering, Hong Kong University of Science and Technology from September 2003 to August 2005, and became a faculty at HUST from Sep. 2005. He is currently a full professor at HUST, and was awarded Distinguished Young Scholars from the National Natural Science Foundation of China in 2011, and the Chang-Jiang Chair Professorship by the Ministry of Education of China from 2014
Dr. Zhaoli Guo obtained both his MSc. (Computational mathematics, 1997) and Ph.D. degrees (High performance computing, 2000) at Huazhong University of Science and Technology (HUST), and then worked as a postdoc at the State Key Laboratory of Coal Combustion (SKLCC) of China (June 2000 –May 2003).
Dr. Guo’s research focuses on kinetic methods and their applications for multiscale transport problems. Particularly, he is interested in lattice Boltzmann equation for complex flflows, discrete unifified gas kinetic schemes for nonequilibrium transport, and kinetic models for strongly inhomogeneous flfluid systems. He is also interested in studying flflow and transport physics using kinetic methods, such as flflow in porous media, particulate flflow, gas-liquid flflow, rarefified gas flflow, phonon heat transfer, radiation transport, and neutron transport. He has published 1 book in English on lattice Boltzmann method, and over 200 scientifific papers in refereed international journals with 9400+ citations and an h-index 45 (Web of Science)[1,4000+citations with h-index 52 in Google Scholar]. He has also presented over 20 invited/keynote talks at international conferences. Currently Dr. Guo’s active research interests include:
  • Kinetic models for strongly inhomogeneous flfluid flflows at small scales;
  • Lattice Boltzmann method for complex flfluid flflows;
  • Discrete unifified gas-kinetic schemes for multiscale flflow and transport;
  • Pore scale simulations of flflows in porous media;
  • Numerical simulations of particulate flflows.


Awards and Honors

  • Most Cited Chinese Researchers, Elsevier (2014-2020);
  • Outstandanding Referee, American Physical Society (2015);
  • Chang-Jiang Professorship, Ministry of Education of China (2014);
  • National Natural Science Award (Second Class), China (2014);
  • Distinguished Young Scholars, National Natural Science Foundation of China (2011).

Representative Papers:

1. Z.L. Guo, Well-balanced lattice Boltzmann model for two-phase systems, Phys. Fluids, 33: 031709
(2021).

2. Z.L. Guo, K. Xu, and R.J. Wang, Discrete unifified gas kinetic scheme for all Knudsen number flflows: Low-speed isothermal case, Phys. Rev. E, 88: 033305 (2013). 

3. Z.L. Guo, T.S. Zhao, Y. Shi, Simple kinetic model for flfluid flflows in the nanometer scale, Phys. Rev. E, 71: 035301 (2005).

4. Z.L. Guo, C.G. Zheng, B.C. Shi, Discrete lattice effffects on the forcing term in the lattice Boltzmann method, Phys. Rev. E, 65: 046308 (2002).

5. Z.L. Guo, C.G. Zheng, B.C. Shi, An extrapolation method for boundary conditions in lattice Boltzmann method, Phys. Fluids, 14: 2007-2010 (2002).

Selected Other Publications:

---------- 2021: ----------

1. L. Ju, B.C. Shan, Z. Yang, Z.L. Guo, An exact non-equilibrium extrapolation scheme for pressure and velocity boundary conditions with large gradients in the lattice Boltzmann method, Comput. Fluids, 231: 105163 (2021).

2. C. Zhang, S.Z. Chen, Z.L. Guo, Heat vortices of ballistic and hydrodynamic phonon transport in two-dimensional materials, Int. J. Heat Mass Transf., 176: 121282 (2021).

3. X. Wen, L.-P. Wang, Z.L. Guo, Development of unsteady natural convection in a square cavity under large temperature difffference, Phys. Fluids., 33, 084108 (2021).

4. B.C. Shan, R.X. Wang, Z.L. Guo, P. Wang, Contribution quantifification of nanoscale gas transport in shale based on strongly inhomogeneous kinetic model,Energy, 228: 120545 (2021).

5. C. Zhang, S.Z. Chen, Z.L. Guo, L. Wu, A fast synthetic iterative scheme for the stationary phonon Boltzmann transport equation, Int. J. Heat Mass Transf., 174: 121308 (2021).

6. Y. Zhang, P. Wang, Z.L. Guo, Oscillatory square cavity flflows of binary gas mixtures, Phys. Fluids, 33: 067121 (2021).

7. B. Shan, S. Chen, Z.L. Guo, P. Wang, Pore-scale study of non-ideal gas dynamics under tight confifinement considering rarefaction, denseness and molecular interactions, J. Nat. Gas Sci. Eng., 90: 103916 (2021).

8. X. Wen, L.-P. Wang, Z.L. Guo, Designing a consistent implementation of the discrete unifified gas-kinetic scheme for the simulation of three-dimensional compressible natural convection, Phys. Fluids, 33: 046101 (2021).

9. C.H. Zhang, Z.L. Guo, H. Liang, On the formulations of interfacial force in the phase-fifield-based lattice Boltzmann method, Int. J. Numer. Meth. Fl., 93: 2225–2248, (2021).

10. L. Ju, B.C. Shan, P.Y. Liu, Z.L. Guo, Pore-scale study of miscible density-driven mixing flflow in porous media, Phys. Fluids, 33: 034113 (2021).

11. X. Wen, L.-P. Wang, Z.L. Guo, D. B. Zhakebayev, Laminar to turbulent flflow transition inside the boundary layer adjacent to isothermal wall of natural convection flflow in a cubical cavity, Int. J. Heat Mass Transf. 167: 120822 (2021).

12. Z.L. Guo, K. Xu, Progress of discrete unifified gas-kinetic scheme for multiscale flflows, Adv. Aero-dyn., 3: 6 (2021).

13. Y. Zhang, P. Wang, Z.L. Guo, Oscillatory Couette flflow of rarefified binary gas mixtures, Phys. Fluids, 33: 027102 (2021).

14. P.Y. Liu, P. Wang, L. Jv, Z.L. Guo, A coupled discrete unifified gas-kinetic scheme for convection heat transfer in porous media, Commun. Comput. Phys., 29, 265–291: (2021).


---------- 2016-2019 ----------

15. X.F. Zhou, Z.L. Guo, Discrete unifified gas kinetic scheme for steady multiscale neutron transport, J. Comput. Phys.,. 423: 109767 (2020). 

16. T. Chen, X. Wen, L.-P. Wang, Z.L. Guo, J.C. Wang, S.Y. Chen, Simulation of three-dimensional compressible decaying isotropic turbulence using a redesigned discrete unifified gas kinetic scheme, Phys. Fluids, 32: 125104 (2020).

17. C. Zhang, M. An, Z.L. Guo, S.Z. Chen, Perturbation theory of thermal rectifification, Phys. Rev. E, 102: 042106 (2020).


18. S. Chen, Z.L. Guo, K. Xu, A Well-balanced gas kinetic scheme for Navier-Stokes equations with gravitational potential, Commun. Comput. Phys., 28: 902–926, (2020).

19. X. Meng, H. Sun, Z.L. Guo, X. F. Yang, A multiscale study of density-driven flflow with dissolution in porous media, Adv. Water Resour., 142: 103640 (2020).

20. C. Zhang, Z.L. Guo, S.Z. Chen, Radial thermal rectifification in concentric silicon ring from ballistic to diffffusive regime, Int. J. Heat Mass Transf., 153: 119665 (2020).

21. M.-Y. Shang, C. Zhang, Z.L. Guo, and J.-T. L¨u, Heat vortex in hydrodynamic phonon transport of two-dimensional materials, Sci. Rep., 10: 8272 (2020).

22. B.C. Shan, P. Wang, Y.H. Zhang, Z.L. Guo, Discrete unifified gas kinetic scheme for all Knudsen number flflows. IV. Strongly inhomogeneous flfluids, Phys. Rev. E, 101: 043303 (2020).

23. F.J. Peng, K. Xiong, R.X. Wang, Y. Li, Z.L. Guo, G. Feng, Molecular insight into microbehaviors of n-decane and CO2 in mineral nanopores, Energy Fuels, 34: 2925–2935 (2020).

24. L. Jv, C.H. Zhang, Z.L. Guo, Local reactive boundary scheme for lattice Boltzmann method, Int. J. Heat Mass Transf., 150: 119314 (2020). 

25. X.L. Song, C. Zhang, X.F. Zhou, Z.L. Guo, Discrete unifified gas kinetic scheme for multiscale anisotropic radiative heat transfer, Adv. Aerodyn., 2: 1-15 (2020).

26. L.H. Zhu, Z.L. Guo, Application of discrete unifified gas kinetic scheme to thermally induced nonequilibrium flflows, Comput. Fluids, 193: 103613 (2019).

27. C.H. Zhang, Z.L. Guo, Y.B. Li, A fractional step lattice Boltzmann model for two-phase flflow with large density difffferences, Int. J. Heat Mass Transf., 138: 1128-1141 (2019)

28. C. Zhang, Z.L. Guo, Discrete unifified gas kinetic scheme for multiscale heat transfer with arbitrary temperature difffference, Int. J. Heat Mass Transf., 134: 1127-1136 (2019)

29. C.H. Zhang, Z.L. Guo, H. Liang, High-order lattice-Boltzmann model for the Cahn-Hilliard equation, Phys. Rev. E, 99: 043310 (2019).

30. J.J. Hu, Z.L. Guo, Effffect of interaction between a particle cluster and a single particle on particle motion and distribution during sedimentation: A numerical study, Phys. Fluids, 31: 033301 (2019). 

31. C. Zhang, Z.L. Guo, S.Z. Chen, An implicit kinetic scheme for multiscale heat transfer problem accounting for phonon dispersion and polarization, Int. J. Heat Mass Transf., 130: 1366-1376 (2019).

32. Y. Zhang, L.H. Zhu, P. Wang, Z.L. Guo, Discrete unifified gas kinetic scheme for flflows of binary gas mixture based on the McCormack model, Phys. Fluids, 31: 017101 (2019).

33. S. Tao, H.L. Zhang, Z.L. Guo, L.P. Wang, A combined immersed boundary and discrete unifified gas kinetic scheme for particle-flfluid flflows, J. Comput. Phys., 375: 498-518 (2018).

34. X.H. Meng, L. Wang, X.F. Yang, Z.L. Guo, Preconditioned multiple-relaxation-time lattice Boltzmann equation model for incompressible flflow in porous media, Phys. Rev. E, 98: 053309 (2018).

35. C.H. Zhang, K. Yang, Z.L. Guo, A discrete unifified gas-kinetic scheme for immiscible two-phase flflows, Int. J. Heat Mass Transf., 126: 1326-1336 (2018).

36. R.X. Wang, F.J. Peng, K.L. Song, G. Feng, Z.L. Guo, Molecular dynamics study of interfacial properties in CO2 enhanced oil recovery, Fluid Phase Equilibria, 467: 25-32 (2018).

37. S. Tao, H.L. Zhang, Z.L. Guo, L.P. Wang, Numerical investigation of dilute aerosol particle transport and deposition in oscillating multi-cylinder obstructions, Adv. Powder Tech. 29: 2003-2018 (2018).

38. Y. Zhang, L.H. Zhu, R.J. Wang, Z.L. Guo, Discrete unifified gas kinetic scheme for all Knudsen number flflows. III. Binary gas mixtures of Maxwell molecules, Phys. Rev. E, 97: 053306 (2018).

39. C. Peng, N. Geneva, Z.L. Guo, L.P. Wang, Direct numerical simulation of turbulent pipe flflow using the lattice Boltzmann method, J. Comput. Phys., 357: 16-42 (2018).

40. J.J. Hu, Z.L. Guo, Numerical study on mass transfer from a composite particle settling in a vertical channel, Int. J. Heat Mass Transf., 117: 132-142 (2018).

41. P. Wang, M.T. Ho, L. Wu, Z.L. Guo, Y.H. Zhang, A comparative study of discrete velocity methods for low-speed rarefified gas flflows, Comput. Fluids, 161: 33-46 (2018).

42. L.H. Zhu, X.F. Yang, Z.L. Guo, Thermally induced rarefified gas flflow in a three-dimensional enclosure with square cross-section, Phys. Rev. Fluids, 2: 123402 (2017).

43. C. Zhang, Z.L. Guo, S.Z. Chen, Unifified implicit kinetic scheme for steady multiscale heat transfer based on the phonon Boltzmann transport equation, Phys. Rev. E, 96: 063311 (2017).

44. C. Peng, Z.L. Guo, L.P. Wang, Lattice Boltzmann model capable of mesoscopic vorticity computation, Phys. Rev. E, 96: 053304 (2017).

45. P. Wang, Y.H. Zhang, Z.L. Guo, Numerical study of three-dimensional natural convection in a cubical cavity at high Rayleigh numbers, Int. J. Heat Mass Transf., 113: 217-228 (2017).

46. S. Tao, Z.L. Guo, Gas-solid drag coeffiffifficient for ordered arrays of monodisperse microspheres in slip flflow regime, Chem. Eng. Tech., 40: 1758–1766 (2017).

47. S. Tao, Z.L. Guo, L.P. Wang, Numerical study on the sedimentation of single and multiple slippery particles in a Newtonian flfluid, Powder Tech., 315: 126-138 (2017).

48. J. Hu, Z.L. Guo, A numerical study on the migration of a neutrally buoyant particle in a Poiseuille flflow with thermal convection, Int. J. Heat Mass Transf., 108: 2158–2168 (2017).

49. L.H. Zhu, Z.L. Guo, Numerical study of nonequilibrium gas flflow in a microchannel with a ratchet surface, Phys. Rev. E, 95: 023113 (2017).

50. J.J. Hu, S. Tao, Z.L. Guo, An effiffifficient unifified iterative scheme for moving boundaries in lattice Boltzmann method, Comput. Fluids, 144:34-43 (2017).

51. S. Tao, H.L. Zhang, Z.L. Guo, Drag correlation for micro spherical particles at fifinite Reynolds and Knudsen numbers by lattice Boltzmann simulations, J. Aeros. Sci. 103: 105-116 (2017).


52. C. Peng, N. Geneva, Z.L. Guo, L.-P. Wang, Issues associated with Galilean invariance on a moving solid boundary in the lattice Boltzmann method, Phys. Rev. E, 95: 013301 (2017).

53. S.Z. Chen, C. Zhang, L.H. Zhu, Z.L. Guo, A unifified implicit scheme for kinetic model equations. Part I. Memory reduction technique, Sci. Bulletin, 62: 119–129 (2017).

54. L.H. Zhu, P. Wang, Z.L. Guo, Performance evaluation of the general characteristics based offff-latticeBoltzmann scheme and DUGKS for low speed continuum flflows, J. Comput. Phys., 333: 227–246 (2017).

55. L.H. Zhu, S.Z. Chen, Z.L. Guo, dugksFoam: An open source OpenFOAM solver for the Boltzmann model equation, Comput. Phys. Commun., 213: 155–164 (2017).

56. Z.L. Guo, K. Xu, Discrete unifified gas kinetic scheme for multiscale heat transfer based on the phonon Boltzmann transport equation, Int. J. Heat Mass Transf., 102: 944-958 (2016).

57. P. Wang, L.-P. Wang, Z.L. Guo, Comparison of the lattice Boltzmann equation and discrete unifified gas-kinetic scheme methods for direct numerical simulation of decaying turbulent flflows, Phys. Rev. E, 94: 043304 (2016).

58. L. Wang, Z.M. Xu, Z.L. Guo, Lattice Boltzmann simulation of separation phenomenon in a binary gaseous flflow through a microchannel, J. Appl. Phys., 120: 134306 (2016).

59. X.H. Meng, Z.L. Guo, Localized lattice Boltzmann equation model for simulating miscible viscous displacement in porous media, Int. J. Heat Mass Transf., 100: 767-778 (2016).

60. S.Z. Chen, Z.L. Guo, K. Xu, Simplifification of the unifified gas kinetic scheme, Phys. Rev. E, 94: 023313 (2016).

61. P. Wang, Z.L. Guo, A semi-implicit gas-kinetic scheme for smooth flflows, Comput. Phys. Commun., 205: 22-31 (2016).

62. S. Tao, J.J. Hu, Z.L. Guo, An investigation on momentum exchange methods and refifilling algorithms for lattice Boltzmann simulation of particulate flflows, Comput. Fluids, 133: 1-14 (2016).

63. C. Peng, H. Min, Z.L. Guo, L.-P. Wang, A hydrodynamically-consistent MRT lattice Boltzmann model on a 2D rectangular grid, J. Comput. Phys., 326: 893–912 (2016).

64. K. Yang, Z.L. Guo, Lattice Boltzmann method for binary flfluids based on mass-conserving quasi incompressible phase-fifield theory, Phys. Rev. E, 93: 043303 (2016).

65. L.-P. Wang, C. Peng, Z.L. Guo, Z.S. Yu, Flow modulation by fifinite-size neutrally buoyant particles in a turbulent channel flflow, J. Fluids Eng., 138: 041306 (2016).

66. J.J. Ren, P. Guo, Z.L. Guo Rectangular lattice Boltzmann equation for gaseous microscale flflow, Adv. Appl. Math. Mech., 8: 306-330 (2016).

67. L.H. Zhu, Z.L. Guo, K. Xu, Discrete unifified gas kinetic scheme on unstructured meshes, Comput. Fluids, 127: 211-225 (2016). 

68. L. Wang, J.C. Mi, Z.L. Guo, A modifified lattice Bhatnagar-Gross-Krook model for convection heat transfer in porous media, Int. J. Heat Mass Transf., 94: 269-291 (2016).

69. G.J. Liu, Z.L. Guo, B.C. Shi, A coupled lattice Boltzmann model for flfluid flflow and diffffusion in a porous medium, Acta Phys. Sinica, 65: 014702 (2016).

70. K. Yang, Z.L. Guo, Lattice Boltzmann study of wettability alteration in the displacement of nanoparticle-fifilled binary flfluids, Comput. Fluids, 124: 157-169 (2016).

71. L.-P. Wang, C. Peng, Z.L. Guo, Z.S. Yu, Lattice Boltzmann simulation of particle-laden turbulent channel flflow, Comput. Fluids, 124: 226-236 (2016).

---------- 2011-2015 ----------

72. X.H. Meng, Z.L. Guo, Multiple-relaxation-time lattice Boltzmann model for incompressible miscible flflow with large viscosity ratio and high P´eclet number, Phys. Rev. E, 92: 043305 (2015).

73. P. Wang, S. Tao, Z.L. Guo, A coupled discrete unifified gas-kinetic scheme for Boussinesq flflows, Comput. Fluids, 120:70–81 (2015).

74. S. Tao and Z.L. Guo, Boundary condition for lattice Boltzmann modeling of microscale gas flflows with curved walls in the slip regime. Phys. Rev. E, 91: 043305 (2015).

75. L. Wang, J.C. Mi, X.H. Meng, and Z.L. Guo, A Localized Mass-Conserving Lattice Boltzmann Approach for Non-Newtonian Fluid Flows Commun. Comput. Phys., 17: 908-924 (2015).

76. G.J. Liu and Z.L. Guo, Pore-Scale Study of the Non-Linear Mixing of Fluids with Viscous Fingering in Anisotropic Porous Media Commun. Comput. Phys., 17: 1019-1036 (2015).

77. Z.L. Guo, R. Wang, and K. Xu, Discrete unifified gas kinetic scheme for all Knudsen number flflows. II. Thermal compressible case, Phys. Rev. E, 91: 033313 (2015).

78. P. Wang, L. Zhu, Z.L. Guo, and K. Xu, A comparative study of LBE and DUGKS methods for nearly incompressible flflows, Commun. Comput. Phys., 17: 657-681 (2015). 

79. K. Yang and Z.L. Guo, Multiple-relaxation-time lattice Boltzmann model for binary mixtures of nonideal flfluids based on the Enskog kinetic theory, Sci. Bullet., 60: 634-647 (2015).

80. L. Wang, L. P. Wang, Z.L. Guo, J. Mi, Volume-averaged macroscopic equation for flfluid flflow in moving porous media, Int. J. Heat Mass Transf., 82: 357-368 (2015).

81. Q. Lou and Z.L. Guo, Interface-capturing lattice Boltzmann equation model for two-phase flflows, Phys. Rev. E, 91: 013302 (2015).

82. J. Ren, P. Guo, Z.L. Guo, and Z. Wang, A lattice Boltzmann model for fifimulating gas flflow in kerogen pores, Trans. Porous Media, 106: 285-301 (2015).

83. S. Tao, L. Wang, Z.L. Guo, Lattice Boltzmann modeling of microscale oscillating Couette flflow, Acta Phys. Sinica, 63: 214703 (2014).

84. L. Wang, Z.L. Guo, and J. C. Mi, Drafting, kissing and tumbling process of two particles with difffferent sizes, Comput. Fluids, 96: 20-34 (2014).

85. Y. Xiong and Z.L. Guo, Effffects of density and force discretizations on spurious velocities in lattice Boltzmann equation for two-phase flflows, J. Phys. A, 47: 195502 (2014).

86. L. Zheng, T. Lee, Z.L. Guo, and D. Rumschitzki, Shrinkage of bubbles and drops in the lattice Boltzmann equation method for nonideal gases, Phys. Rev. E, 89: 033302 (2014).

87. Z.L. Guo, J. Qin, and C.G. Zheng, Generalized second-order slip boundary condition for nonequilibrium gas flflows, Phys. Rev. E, 89: 013021 (2014).

88. Z.M. Xu and Z.L. Guo, Pressure distribution of the Gaseous flflow in microchannel: a Lattice Boltzmann study, Commun. Comput. Phys., 14: 1058-1072 (2013).

89. Q. Lou, Z.L. Guo, and B.C. Shi, Evaluation of outflflow boundary conditions for two-phase lattice Boltzmann equation, Phys. Rev. E, 87: 063301 (2013).

90. L. Wang, Z.L. Guo, B.C. Shi, and C.G. Zheng, Evaluation of three lattice Boltzmann models for particulate flflows. Commun. Comput. Phys., 13: 1151-1172 (2013).

91. W. Mao, AAA, L. Wang, Lattice Boltzmann simulation of the sedimentation of particles with thermal convection, Acta Phys. Sinica, 62: 084703 (2013).

92. X.L. Liu, Z.L. Guo, A lattice Boltzmann study of gas flflows in a long micro-channel. Comput. Math. Appl., 65: 186-193 (2013).

93. G. Liu and Z.L. Guo, Effffects of Prandtl number on mixing process in miscible Rayleigh-Taylor instability. Int. J. Numer. Meth. Heat Fluid Flow, 23: 176-188 (2013)

94. Q. Lou, Z.L. Guo, and B.C. Shi, Effffects of force discretization on mass conservation in lattice Boltzmann equation for two-phase flflows. EPL, 99: 64005 (2012).

95. L. Zheng, Z.L. Guo, and B.C. Shi, Microscale boundary conditions of the lattice Boltzmann equation method for simulating microtube flflows. Phys. Rev. E, 856: 016712 (2012).

96. Z.L. Guo, C.G. Zheng, B.C. Shi, Force imbalance in lattice-Boltzmann equation for two-phase flflows, Phys. Rev. E 83: 036707 (2011) 

97. K. Xu and Z.L. Guo, Multiple temperature gas dynamic equations for non-equilibrium flflows. J. Comput. Math., 29: 639-660 (2011).

98. Z.L. Guo, C.G. Zheng, B.C. Shi, Checkerboard effffects on spurious currents in lattice Boltzmann equation for two-phase flflows. Phil. Trans. Royal Soc. A, 369: 2283-2291 (2011).

99. Q. Lou, Z.L. Guo, and C.G. Zheng, Some fundamental properties of lattice Boltzmann equation for two phase flflows. CMES-Comput. Mod. Eng. Sci., 76: 175-188 (2011).

100. Z.L. Guo, B.C. Shi, C.G. Zheng, Velocity inversion of micro cylindrical Couette flflow: A lattice Boltzmann study. Comput. Math. Appl., 61: 3519-3527 (2011).

---------- 2006-2010 ----------


101. Lin Zheng, Z.L. Guo, B.C. Shi, C.G. Zheng, Lattice Boltzmann method for thermocapillary flflows, Adv. Appl. Math. Mech., 2: 677–684 (2010).

102. Liang Wang, Z.L. Guo, C.G. Zheng, Multi-relaxation-time lattice Boltzmann model for axisymmetric flflows. Comput. Fluids, 39: 1542-1548 (2010).

103. Lin Zheng, Z.L. Guo, B.C. Shi, C.G. Zheng, Kinetic theory based lattice Boltzmann equation with viscous dissipation and pressure work for axisymmetric thermal flflows. J. Comput. Phys., 229: 5843-5856 (2010) .

104. Lin Zheng, Baochang Shi, Z.L. Guo, C.G. Zheng, Lattice Boltzmann equation for axisymmetric thermal flflows. Comput. Fluids, 39: 945-952 (2010) .

105. Lin Zheng, Z.L. Guo, B.C. Shi, C.G. Zheng, Finite-difffference-based multiple-relaxation-times lattice Boltzmann model for binary mixtures. Phys. Rev. E, 81: 016706 (2010).

106. Z.L. Guo, Kun Xu, Numerical validation of Brenners hydrodynamic model by force driven Poiseuille flflow. Adv. Appl. Math. Mech., 1: 391-401 (2009).

107. Z.L. Guo, H.F. Han, B.C. Shi, C.G. Zheng, Theory of the lattice Boltzmann equation: Lattice Boltzmann model for axisymmetric flflows. Phys. Rev. E, 79: 046708, (2009).

108. Z.L. Guo, P. Asinari, C.G. Zheng, Lattice Boltzmann equation for microscale gas flflows of binary mixtures. Phys. Rev. E, 79: 026702 (2009).

109. K. Xu, Z.L. Guo, Generalized gas dynamic equations with multiple translational temperatures. Mod. Phys. Lett. B, 23: 237-240 (2009).

110. B.C. Shi, Z.L. Guo, Lattice Boltzmann model for nonlinear convection-diffffusion equations. Phys. Rev. E, 79: 016701 (2009). 

111. Z.L. Guo, C.G. Zheng, B.C. Shi, Incompressible lattice Boltzmann model for porous flflows with large pressure gradient. Prog. Comput. Fluid Dyn., 9: 225-230 (2009).

112. Lin Zheng, B.C. Shi, Z.L. Guo, Multiple-relaxation-time model for the correct thermohydrodynamic equations. Phys. Rev. E, 78: 026705 (2008).

113. Lin Zheng, Z.L. Guo, B.C. Shi, Discrete effffects on thermal boundary conditions for the thermal lattice Boltzmann method in simulating microscale gas flflows. EPL, 82: 44002 (2008).

114. Z.L. Guo, Hongwei Liu, Li-Shi Luo, K. Xu, A comparative study of the LBE and GKS methods for 2D near incompressible laminar flflows. J. Comput. Phys., 227: 4955-4976 (2008).

115. Z.L. Guo, C.G. Zheng, B.C. Shi, Lattice Boltzmann equation with multiple effffective relaxation times for gaseous microscale flflow. Phys. Rev. E, 77: 036707, (2008).

116. Z.L. Guo, C.G. Zheng, Analysis of lattice Boltzmann equation for microscale gas flflows: Relaxation times, boundary conditions and the Knudsen layer. Int. J. Comput. Fluid Dyn., 22: 465-473 (2008).

117. Z.L. Guo, B.C. Shi, C.G. Zheng, An extended Navier-Stokes formulation for gas flflows in the Knudsen layer near a wall, Europhy. Lett., 80: 24001 (2007).

118. Z.L. Guo, C.G. Zheng. B.C. Shi, T.S. Zhao, Thermal lattice Boltzmann equation for low Mach number flflows: decoupling model, Phys. Rev. E, 75: 036704 (2007). 

119. Z.L. Guo, B.C. Shi, T.S. Zhao, C.G. Zheng, Discrete effffects on boundary conditions for the lattice Boltzmann equation in simulating microscale gas flflows, Phys. Rev. E, 76: 056704 (2007).

120. Z.L. Guo, T.S. Zhao, Y. Shi, Generalized hydrodynamic model for flfluid flflows: from nanoscale to macroscale, Phys. Fluids, 18: 067107 (2006). 

121. Z.L. Guo, T.S. Zhao, C. Xu, Y. Shi, Simulation of flfluid flflows in the nanometer: kinetic approach and molecular dynamic simulation, Int. J. Comput. Fluid Dyn., 20: 361–367 (2006).

122. Z.L. Guo, T.S. Zhao, Y. Shi, Physical symmetry, spatial accuracy, and relaxation time of the lattice Boltzmann equation for microgas flflows, J. Appl. Phys., 99: 074903 (2006).

---------- 2005 and before ----------

123. Z.L. Guo, T.S. Zhao, Y. Shi, Temperature dependence of the velocity boundary condition for nanoscale flfluid flflows, Phys. Rev. E, 72: 036301 (2005).

124. Z.L. Guo, T.S. Zhao, Y. Shi, A Lattice Boltzmann algorithm for electro-osmotic flflow in microflfluid devices, J. Chem. Phys., 122: 144907 (2005).

125. Z.L. Guo, T.S. Zhao, A lattice Boltzmann model for convection heat transfer in porous media, Num. Heat Trans. B, 47: 157–177 (2005). 

126. Z.L. Guo, T.S. Zhao, Finite-difffference-based lattice Boltzmann model for dense binary mixtures, Phys. Rev. E, 71: 026701 (2005).

127. Z.L. Guo, T.S. Zhao, Lattice Boltzmann simulation of natural convection with temperature-dependent viscosity in a porous cavity, Prog. Comput. Fluid Dyn., 5: 110–117 (2005).

128. Z.L. Guo, T.S. Zhao, Y. Shi, Preconditioned lattice-Boltzmann method for steady flflows, Phys. Rev. E, 70: 066706 (2004).

129. Z.L. Guo, T.S. Zhao, Discrete velocity and lattice Boltzmann models for binary mixtures of nonideal flfluids, Phys. Rev. E, 68: 035302 (2003). Parallel simulation of flfluid flflows and its visualization

130. Z.L. Guo, T.S. Zhao, Explicit fifinite-difffference lattice Boltzmann method for curvilinear coordinates, Phys. Rev. E, 67: 066709 (2003).

131. Z.L. Guo, C.G. Zheng, B.C. Shi, Domain-decomposition technique in lattice Boltzmann method, Int. Mod. Phys. B, 17: 129–133 (2003). 

132. Z.L. Guo, T.S. Zhao, Lattice Boltzmann model for incompressible flflows through porous media, Phys. Rev. E, 66: 036304 (2002).

133. Z.L. Guo, B.C. Shi, C.G. Zheng, A coupled lattice BGK model for the Boussinesq equations, Int. J. Numer. Meth. Fl., 39: 325–342 (2002).

134. Z.L. Guo, C.G. Zheng, B.C. Shi, Non-equilibrium extrapolation method for velocity and pressure boundary conditions in the lattice Boltzmann method, Chinese Phys., 11: 366–374 (2002).

135. Z.L. Guo, C.G. Zheng, T.S. Zhao , A lattice BGK scheme with general propagation, J. Sci. Comput., 16: 569–585 (2001).

136. Z.L. Guo, B.C. Shi, N.C. Wang, Two new algorithms based on product system for discrete cosine transform, Signal process., 81: 1899–1908 (2001).

137. Z.L. Guo, B.C. Shi, N.C. Wang, Lattice BGK model for incompressible Navier-Stokes equation, J. Comput. Phys., 165: 288–306 (2000).

138. Z.L. Guo, B.C. Shi, N.C. Wang, Fully Lagrangian and lattice Boltzmann methods for the advection diffffusion equation, J. Sci. Comput., 14: 291-300 (1999).